
Irreducible representations of Up,q[gl(2/2)]

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 7881

(http://iopscience.iop.org/0305-4470/34/38/312)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OFPHYSICSPUBLISHING JOURNAL OF PHYSICSA: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen.34 (2001) 7881–7887 PII: S0305-4470(01)24365-0

Irreducible representations of Up,q[ gl(2 /2)]

Nguyen Anh Ky

Institute of Physics, PO Box 429, Bo Ho, Hanoi 10000, Vietnam

Received 18 April 2001
Published 14 September 2001
Online atstacks.iop.org/JPhysA/34/7881

Abstract
The two-parametric quantum superalgebraUp,q [gl(2/2)] and its representa-
tions are considered. All finite-dimensional irreducible representations of this
quantum superalgebra can be constructed and classified into typical and non-
typical ones according to a proposition proved in the present paper. This propo-
sition is a non-trivial deformation from the one for the classical superalgebra
gl(2/2), unlike the case of one-parametric deformations.

PACS numbers: 02.20.Tw, 11.30.Pb
Mathematics Subject Classification: 81R50, 17A70

1. Introduction

The quantum groups [1–6] were introduced in the 80s as a result of the study on quantum
integrable systems and Yang–Baxter equations (YBEs) [7]. At first sight, it turns out that
they are related to unrelated areas of both physics and mathematics and, therefore, have been
intensively investigated in various aspects, including their applications (see references [1–15]
and references therein). For applications of quantum groups, as in the non-deformed cases,
we often need their explicit representations, in particular, the finite dimensional ones which
in many cases are connected with rational and trigonometric solutions of the quantum YBEs
[1–8]. However, in spite of the effort and remarkable results in this direction, the problem
of investigating and constructing explicit representations of quantum groups, especially those
for quantum superalgebras, is still far from being satisfactorily solved. Even in the case of
one-parametric quantum superalgebras,explicit representations are mainly known for quantum
Lie superalgebras of lower ranks and of particular types likeUq [osp(1/2)] andUq [gl(1/n)]
(references [15–17]). So far, finite-dimensional representations of some bigger quantum
superalgebras such asUq [osp(1/2n)] andUq [gl(m/n)] with m,n > 2 have been considered
but have not been explicitly constructed (see, for example, [18, 19]). At the moment, detailed
results in this aspect are known only for the cases with bothm,n � 2 considered in [15, 20,
21], while forUq [gl(m/n)] with arbitrarym andn not all finite-dimensional representations
but only a, although big, class of representations called essentially typical is known [22].

As far as the multi-parametric deformations (first considered in [3]) are concerned,
this area is even less covered and results are much poorer. Some types of two-parametric
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deformations have been considered by a number of authors from different points of view
(see [23, 24] and references therein) but, to our knowledge, explicit representations are known
and/or classified in a few lower rank cases such asUp,q [sl(2/1)] and Up,q [gl(2/1)] only
[23, 25]. The latter two-parametric quantum superalgebraUp,q [gl(2/1)] was consistently
introduced and investigated in [23] where all its finite-dimensional irreducible representations
were explicitly constructed and classified at generic deformation parameters. This
Up,q [gl(2/1)], however, is still a small quantum superalgebra which can be defined without
the so-called extra-Serre defining relations [26–28] representing additional constraints on odd
Chevalley generators in higher rank cases. In order to include the extra-Serre relations on
examination we introduced and considered a bigger two-parametric quantum superalgebra,
namelyUp,q [gl(2/2)] and its representations [24, 29]. Our other motivation for considering
this quantum superalgebra is that already in the non-deformedcase, the superalgebrasgl(n/n),
especially their subalgebrassl(n/n) andpsl(n/n), have special properties (in comparison with
othergl(m/n), m �= n) and, therefore, attract interest [30–32]. Additionally, structures of
two-parameter deformations investigated in [23, 24, 29] and here are, of course, richer than
those of one-parameter deformations. Every deformation parameter can be independently
chosen to take a separate generic value (including zero) or to be a root of unity.

Combining the advantages of the previously developed methods [20, 21, 23] for
Uq [gl(2/2)] and Up,q [gl(1/2)], we described in [24] how to construct finite-dimensional
representations of the two-parametric quantum Lie superalgebraUp,q [gl(2/2)]. In this paper
we consider when these representations constructed are irreducible. It turns out that they
can be classified again into typical and non-typical representations which, even at generic
deformation parameters, however, are non-trivial deformations from the classical analogues
[33], unlike many cases of one-parametric deformations.

2. The quantum superalgebra Up,q[ gl(2 /2)]

The quantum superalgebraUp,q ≡ Up,q [gl(2/2)], as a two-parametric deformation of the
universal enveloping algebraU [gl(2/2)] of the Lie superalgebragl(2/2), can be completely
generated by the operatorsLk, E12, E23, E34, E21, E32, E43 andEii (1 � i � 4) again called
Cartan–Chevalley generators subject to the following (defining) relations [24, 29]:

(a) Super-commutation relations (1 � i, i + 1, j, j + 1 � 4):

[Eii, Ejj ] = 0 (1a)

[Eii, Ej,j+1] = (δij − δi,j+1)Ej,j+1 (1b)

[Eii, Ej+1,j ] = (δi,j+1 − δij )Ej+1,j (1c)

[even generator, Lk] = 0, k = 1,2,3 (1d)

[Ei,i+1, Ej+1,j } = δij

(
q

p

)Li−Hi(1+δi2)/2

[Hi] (1e)

(b) Serre relations:

[E12, E34] = [E21, E43] = 0 (2a)

E2
23 = E2

32 = 0 (2b)

[E12, E13]p = [E21, E31]q = [E24, E34]q = [E42, E43]p = 0 (2c)

(c) Extra-Serre relations:

{E13, E24} = 0 (3a)

{E31, E42} = 0 (3b)
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whereHi ≡ (Eii − di+1
di

Ei+1,i+1), d1 = d2 = −d3 = −d4 = 1, L1 ≡ Ll, L2 ≡ 0, L3 ≡ Lr

(with Ll andLr explained later), [x] ≡ (qx −p−x)/(q −p−1) is a so-calledpq-deformation
of x being a number or an operator and, finally, [, } is a notation for the supercommutators.
Here, the operators

E13 := [E12, E23]q−1 (4a)

E24 := [E23, E34]p−1 (4b)

E31 := −[E21, E32]p−1 (4c)

E42 := −[E32, E43]q−1 (4d)

and the operators composed in the following way:

E14 := [E12, [E23, E34]p−1]q−1 ≡ [E12, E24]q−1 (5a)

E41 := [E21, [E32, E43]q−1]p−1 ≡ −[E21, E42]p−1 (5b)

are defined as new generators, where [A,B]r = AB − rBA. These generators, likeE23
and E32, are all odd and have vanishing squares. The generatorsEij ,1 � i, j � 4,
are two-parametric deformation analogues (pq-analogues) of the Weyl generatorseij of the
superalgebragl(2/2) whose universal enveloping algebraU [gl(2/2)] is a classical limit of
Up,q [gl(2/2)] whenp, q → 1. The so-called maximal-spin operatorLl (or Lr ) is a constant
within a finite-dimensional irreducible module (fidirmod) of a Up,q [gl(2)] (defined below)
and are different for differentUp,q [gl(2)]-fidirmods. Therefore, commutators between these
operators with the odd generators intertwiningUp,q [gl(2)]-fidirmods take concrete forms on
concrete basis vectors. Other commutation relations betweenEij follow from the relations
(1)–(3) and the definitions (4) and (5).

3. Representations of Up,q[ gl(2 /2)]

The subalgebraUp,q [gl(2/2)0] (⊂ Up,q [gl(2/2)]0 ⊂ Up,q [gl(2/2)]) is even and isomorphic
to Up,q [gl(2) ⊕ gl(2)] ≡ Up,q [gl(2)] ⊕ Up,q [gl(2)], which can be completely generated by
L1, L3, E12, E34, E21, E43 andEii,1 � i � 4,

Upq [gl(2/2)0] = lin.env.{L1, L3, Eij ‖ i, j = 1,2 andi, j = 3,4}. (6)

In order to distinguish two componentsUp,q [gl(2)] of Up,q [gl(2/2)0] we set

left Up,q [gl(2)] ≡ Up,q [gl(2)l ] := lin.env.{L1, Eij‖ i, j = 1,2} (7)

rightUp,q [gl(2)] ≡ Up,q [gl(2)r ] := lin.env.{L3, Eij‖ i, j = 3,4} (8)

that is

Up,q [gl(2/2)0] = Up,q [gl(2)l ⊕ gl(2)r ]. (9)

We see that each of the odd spacesA+ andA− spanned on the positive and negative odd
roots (generators)Eij andEji , 1 � i � 2 < j � 4, respectively

A+ = lin.env.{E14, E13, E24, E23} (10)

A− = lin.env.{E41, E31, E42, E32} (11)

is a representation space of the even subalgebraUp,q [gl(2/2)0] which, as seen from
(1) and (2), is a stability subalgebra ofUp,q [gl(2/2)]. Therefore, we can construct
representations ofUp,q [gl(2/2)] induced from some (finite-dimensional irreducible, for
example) representations ofUp,q [gl(2/2)0], which are realized in some representation spaces
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(modules)V p,q

0 being tensor products ofUp,q [gl(2)l ]-modulesV
p,q

0,l and Up,q [gl(2)r ]-

modulesV p,q
0,r

V
p,q

0 (�) = V
p,q

0,l (�l) ⊗ V
p,q

0,r (�r) (12)

where�’s are some signatures (such as highest weights, respectively) characterizing the
modules (highest weight modules, respectively). Here�l and�r are referred to as the left
and the right components of�, respectively,

� = [�l,�r ]. (13)

If we demand

E23V
p,q
0 (�) = 0 (14)

hence

Up,q(A+)V
p,q

0 = 0 (15)

we turn theUp,q [gl(2/2)0]-moduleV p,q
0 into aUp,q(B)-module where

B = A+ ⊕ gl(2) ⊕ gl(2). (16)

TheUp,q [gl(2/2)]-moduleWp,q induced from theUp,q [gl(2/2)0]-moduleV p,q

0 is the factor
space

Wp,q = Wp,q(�) = [
Up,q ⊗ V

p,q

0 (�)
]
/Ip,q (�) (17)

which, of course, depends on�, where

Up,q ≡ Up,q [gl(2/2)] (18)

while Ip,q is the subspace

Ip,q = lin.env.
{
ub⊗ v − u⊗ bv‖u ∈ Up,q, b ∈ Up,q(B) ⊂ Up,q, v ∈ V

p,q
0

}
. (19)

Using the commutation relations (1)–(3) and the definitions (4) and (5) we can prove
the analogue of the Poincaré–Birkhoff–Witt theorem. Consequently, a basis ofWp,q can be
constituted by taking all the vectors of the form

|θ1, θ2, θ3, θ4; (λ)〉 := (E41)
θ1(E31)

θ2(E42)
θ3(E32)

θ4 ⊗ (λ) θi = 0,1 (20)

where (λ) is a (Gel’fand–Zetlin, for example) basis ofV
p,q

0 ≡ V
p,q

0 (�). This basis ofWp,q

called the inducedUp,q [gl(2/2)]-basis (or simply, the induced basis), however, is not conve-
nient for investigating the module structure ofWp,q . It was the reason the so-called reduced
basis was introduced [24]. It is obvious that if the moduleV

p,q
0 is finite-dimensional so is the

moduleWp,q . In this caseWp,q can be characterized by a signature [m] and is decomposed
into a direct sum of (16, at most)Up,q [gl(2/2)0]-fidirmod’sV

p,q
k of signatures [m]k:

Wp,q([m]) =
15⊕
k=0

V
p,q
k ([m]k). (21)

Thus, the reduced basis ofWp,q is a union of the bases of allV p,q
k ’s which can be

presented by the quasi-Gel’fand–Zetlin patterns [24], corresponding to the branching rule
Up,q [gl(2/2)] ⊃ Up,q [gl(2/2)0] ⊃ Up,q [gl(1) ⊗ gl(1)],

m13 m23 m33 m43

m12 m22 m32 m42

m11 0 m31 0




k

≡ (m)k 0 � k � 15 (22)
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wheremij are complex numbers such thatmi2 −mi1 ∈ Z+,mi1 − mi+1,2 ∈ Z+,mi3 −
mi+1,3 ∈ Z+, i = 1,3. The second row [m12,m22,m32,m42] in (22) is fixed for a givenk,
as fork = 0 it takes the value of the first row [m13,m23,m33,m43] which is fixed for all
k = 0,1, . . . ,15. Now, a signature [m]k of aV

p,q

k is identified with a second row,

[m]k ≡ [m12,m22,m32,m42]

while the signature [m] single in the wholeWp.q (i.e., the same for allV p.q
k ’s) is identified

with the first row,

[m] ≡ [m13,m23,m33,m43].

The actions of the generatorsEij on the basis (22) are given in [24] or can be calculated by
using the method explained there. The basis vector (22) withm11 = m12 andm31 = m32

(M)k =

m13 m23 m33 m43

m12 m22 m32 m42

m12 0 m32 0




k

(23)

annihilated byE12 andE34 is, by definition, the highest weight vector of the submodule
V

p,q

k ([m]k). Fork = 0 the highest weight vector of the submoduleV
p,q

0 ([m])

(M)0 ≡ (M) =

m13 m23 m33 m43

m13 m23 m33 m43

m13 0 m33 0


 (24)

is, in addition, also annihilated by the odd generatorE23 and, therefore, simultaneously
represents the highest weight vector of bothV

p,q

0 ([m]) andWp,q([m]). A monomial of the
form

|θ1, θ2, θ3, θ4〉 := (E41)
θ1(E31)

θ2(E42)
θ3(E32)

θ4 θi = 0,1 (25)

would shift a subspaceV p,q
k to another subspaceV p,q

l with l > k. So here we would call the
former a higher (weight) subspace with respect to the latter called a lower (weight) subspace.

Proposition: The induced module Wp,q [m] constructed is irreducible if and only if[
h0

2

] [
h0

1 + h0
2 + 1

] {
− q

p

[
h0

2 − 1
] [

h0
3 + 1

]
+

[
h0

2

] [
h0

3

]}{
−q−h0

2+1p−h0
3−1

[
h0

1 + 1
]

− qh0
1

(
q

p

)−h0
2+1 [

h0
2 − 1

] [
h0

3 + 1
]

+ qh0
1

(
q

p

)−h0
2 [

h0
2

] [
h0

3

]

+
q

p

(
−q−h0

2 + q−h0
2−2

) [
h0

3

] (
qh0

1+1 +
q2

p2

[
h0

1

]) }
�= 0 (26)

where h0
1 = m13 − m23, h

0
2 = m23 + m33, h

0
3 = m33 − m43.

The irreducible moduleWp,q constructed with keeping the condition (26) valid is called
typical, otherwise, we say it is an indecomposable module. In the latter case, however,
there always exists a maximal invariant submoduleI

p,q

h (of classh, h = 1,2, . . .) of Wp,q and
the compliment toIp,q

h subspace ofWp,q is not invariant underUp,q [gl(2/2)] transformations.
The representation carried in the factor moduleWp,q/I

p,q
h is irreducible and called a

non-typical representation ofUp,q [gl(2/2)]. It can be shown that these typical and non-
typical representations contain all classes of finite-dimensional irreducible representations of
Up,q [gl(2/2)].

As every subspaceV p,q

k , k = 0,1, . . . ,15, is close and already irreducible under the
even subalgebraUp,q [gl(2/2)0], to see ifWp,q is an irreducible module ofUp,q it remains to
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consider the action of its odd generators only. By construction (see equations (17)–(21)) the
moduleWp,q is at least indecomposable since any its subspaceV

p,q
k ,1 � k � 15, including

the lowest oneV p,q

15 , can be always reached from higher subspacesV
p,q

l , 0 � l < k, including
the highest oneV p,q

0 , acted by the monomials|θ1, θ2, θ3, θ4〉 given in (25). Contrarily, the
monomials

〈θ1, θ2, θ3, θ4| := (E14)
θ1(E13)

θ2(E24)
θ3(E23)

θ4 (27)

send us to the opposite direction: from lower subspaces to higher ones. Thus, the moduleWp,q

is irreducible if and only ifV p,q
0 is reachable from the lowest subspaceV

p,q

15 under the action
of the operators (27). The most optimal way to see that is to act on a vector of the subspace
V

p,q

15 by the monomialE14E13E24E23, i.e., the monomial (27) with allθi ’s = 1 but not less
(an action of a shorter monomial onV p,q

15 should not reachV p,q
0 ). SinceV p,q

15 is an irreducible
module ofUp,q [gl(2/2)0], it is simplest but enough to consider when the highest weight
vectorE41E31E42E32(M) of V p,q

15 under the action ofE14E13E24E23 reaches (or we can say,
returns to)V p,q

0 . In other words, the moduleWp,q is irreducible if and only if the condition

E23E24E13E14E41E31E42E32(M) �= 0 (28)

holds. This condition in turn can be proved (forp, q �= 0) to be equivalent to the condition

[H2][H1 + H2 + 1]

{
− q

p
[H2 − 1][H3 + 1] + [H2][H3]

}{
−q−H2+1p−H3−1[H1 + 1]

− qH1

(
q

p

)−H2+1

[H2 − 1][H3 + 1] + qH1

(
q

p

)−H2

[H2][H3]

+
q

p

(
−q−H2 + q−H2−2

)
[H3]

(
qH1+1 +

q2

p2 [H1]

)}
(M) �= 0 (29)

which is nothing but (26) withh0
i being eigenvalues ofHi on the highest weight vector (M).

The proposition is, thus, proved.

4. Conclusion

The two-parametric quantum superalgebraUp,q [gl(2/2)] was introduced in [24, 29]. Its
representations constructed by the method described in [24] are either irreducible (when
the condition (26) is kept) or indecomposable (when the condition (26) is violated). The
irreducible representations in the former case are called typical. In the case of indecomposable
representations, however, irreducible representations can always be extracted. One such
irreducible representation called non-typical is simply a factor representation in a factor
subspace of the original indecomposable module factorized by its maximal invariant subspace.
All the typical and non-typical representations are constructed in such a way that they contain
all classes of finite-dimensional irreducible representations ofUp,q [gl(2/2)]. In conclusion,
let us emphasize that the condition (26) and the representations become more interesting at
roots of unity but they, even at generic deformation parameters, are non-trivial deformations
from the classical analogues [33] in the sense that the former cannot be found from the latter
by replacing in appropriate places the ordinary brackets with the quantum deformation ones,
unlike many one-parametric cases. We hope that the present results (and also previous ones
[20–24, 33]) are physically useful and can be applied to investigating different physics models
such as conformal field theory models [30–32] and solvable models of correlated electrons
(see for example [34–36] and references therein).
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